

Building Large Scale Mosaics from Landsat Data
Lucian Plesea

Jet Propulsion Laboratory,
California Institute of Technology

4800 Oak Grove Drive, MS 126-234
Pasadena, CA 91109-8099

818 354-3928

Lucian.Plesea@jpl.nasa.gov

Joseph Jacob
Jet Propulsion Laboratory,

California Institute of Technology
4800 Oak Grove Drive, MS 126-234

Pasadena, CA 91109-8099
818 354-0673

Joseph.Jacob@jpl.nasa.gov

ABSTRACT

This paper describes the process and tools used for creating a full
resolution seamless Landsat mosaic of the continental U.S. at 30
meters per pixel. The 6-band, 150GB image was built from 428
individual Landsat scenes of the Multi-Resolution Land
Characteristics (MRLC) dataset. Custom designed software based
on SGI ImageVision framework was developed on JPL
supercomputers to accomplish this task as a single step operation,
with minimal operator input. Novel techniques were used to deal
with data storage and access issues. Various color matching
algorithms can be used to generate a parameter set, which in turn
controls all the details of building the mosaic. Some of the tested
algorithms and their results will also be discussed.

Keywords
Mosaic, Landsat, color matching, supercomputer.

1. INTRODUCTION
With the advent of Landsat [1] imagery, it became relatively easy
to obtain high quality imagery for large portions of the globe.
Individual Landsat scenes and mosaics of a few scenes are
routinely used in various applications [4]. Attempting to assemble
more than a few scenes, especially across a number of Landsat
orbital paths is a complex task. Six Federal environmental
monitoring programs, EMAP (US EPA), GAP (USGS), NAWQA
(USGS), C-CAP (NOAA), NALC (US EPA/USGS), and the RSA
Center (USFS) have formed a partnership with the EROS Data
Center (USGS) in 1995 to facilitate the development of
comprehensive land characteristics information for the United
States. This partnership established the Multi-Resolution Land
Characteristics Interagency Consortium (MRLC) [2] to
collectively purchase a set of Landsat scenes to serve as a basis for
nation-wide land coverage studies. 530 scenes collected in 1992
and 1993 were selected for minimal cloud coverage, converted to
UTM [3] projection, geo-referenced and correlated with the

USGS Level 1 Digital Elevation Model.

Since JPL and Caltech supercomputing assets are frequently used
for large scale visualizations, we became very interested in this
dataset. The potential of applying supercomputing to build a full
resolution Landsat image mosaic of the continental U.S. from this
dataset was recognized.

2. REQUIREMENTS
Finding the right brightness corrections to be applied to each
scene so that they can be blended into a mosaic can be done using
a multitude of algorithms. The ability to experiment with various
approaches was considered essential. To accommodate this, a
deliberate decision was made to separate the brightness correction
algorithm from the mosaicking code. A set of parameters that
encapsulate all the information needed to build a mosaic can be
generated by an external process and then used to build a mosaic.
Since manipulating such large quantities of data takes
considerable time, even on a high performance supercomputer, a
very important requirement is the ability to stop and restart the
generation of the mosaic at any point. Also, it is essential to be
able to regenerate a small portion of the mosaic without affecting
the rest of the image. On our supercomputer, most of the available
computing time is available via a job queuing system, so the
ability to run in non-interactive, unsupervised mode was essential.
Severe restrictions were also imposed by the very large dataset. A
single step process, from raw input files to the final mosaic
eliminates the storage of intermediate data and guarantees the
propagation of any change in input data and parameters to the
output.

3. APPROACH
Since JPL’s main supercomputer is a SGI Origin 2000, the
development environment is very well suited for image processing
tasks. In particular, SGI’s ImageVision Library (IL) [5] provides a
rich framework, with features such as parallel processing,
integrated memory management, flexible input/output storage
options and a large pre-built set of image processing operators.
Using the IL requires building an image processing chain from
available and custom modules, and then asking for areas of the
output image. The processing engine follows the dependency
chain and assigns processing units to modules in the proper order
to generate the requested output. Being a C++ object library, it is
also easily extendable with custom operators. The main
disadvantage is that the IL has not been ported to any
environment other than SGI IRIX.

3.1 Mosaicking Process Description
The output image is generated in smaller areas (tiles). This allows
for start/stop/restart at any tile boundary without affecting the rest
of the mosaic. For each tile, a subset of the input dataset that
could contribute to the output tile is selected. This reduces
drastically the size of the input dataset that needs to be used for
each tile, and also introduces an important mechanism for
controlling the processing efficiency. A larger output tile size uses
more input images but utilizes the cache better, while a smaller
tile incurs a much larger I/O overhead. Within each tile, smaller
regions (pages) are used as the unit of data, each one being
computed in a potentially parallel environment.

The input images are first remapped to the output projection using
a choice of bilinear or cubic interpolation. This is done via an IL
custom warp operator that implements the UTM to Platte Carre
(latitude and longitude) conversion. The last step is to blend all
the transformed and color corrected input images into the output
tile via a custom weighted sum blend operator. This operator
applies the brightness correction to the input images
independently for every band, then computes a weighted sum
between all the input images, using the pixel values from a blend
mask image (described later) as the weights. For example, let j be
the input image (j from 1 to N), and i the band (i from 1 to 6). For
each pixel value Ki in the band i of the output mosaic, let Pij be
the value of the corresponding pixel value from image j band i.
Let Gij and Oij be the multiplicative and additive corrections for
image j band i, and Qj be the value of the blend mask for image j.
Using this notation, the value of the output pixel can be computed
using the following formula.

()[]

�

�

=

=

+
= N

j
j

N

j
ijijijj

i

Q

OPGQ
K

1

1

**
.

The output image built using this algorithm is then written to the
output file.
The values for Qj for each input image are obtained from a
corresponding blend mask image. This mask, which follows the
image through the projection transformation, is used to produce a
smooth blended edge where scenes overlap and also to eliminate
undesirable portions of the input image. The use of a blend mask
solves a multitude of problems. A Landsat scene in UTM
projection does not fill the whole rectangular input image since
the satellite has an 8 degree inclination. A blend mask value of 0
in the areas known not to be covered will effectively eliminate
those input pixels from the output. The overlap between Landsat
scenes is also hard to determine. Due to the geometry of the
trajectory, the overlap varies between a nominal 7.3% at the
equator and 80% at 81 degrees latitude. Orbit to orbit variability,
orthorectification and georeferencing of an image introduce even
more uncertainty in the precise location of a Landsat scene edge.

3.2 Brightness Correction
As described, the brightness matching only allows for a
multiplicative and an additive factor to control the brightness
correction for each band within each scene. This produces
reasonable output but does not allow for corrections for areas

smaller than the scene. A better approach would be to have a
correction mask for each band within each scene, thus gaining
precise control over the value of each individual input pixel. This
seems like a lot of storage overhead, but in most generic cases
these masks will be rather uniform, subject to good compression
ratios and parametric description. For example, our blend masks
compress to less than 1% of a scene. It should be noted that if the
blend masks and the correction factors are not present, default
values are used, so that uncorrected mosaics can be generated for
test purposes.

With the framework described above a large number of possible
algorithms for brightness corrections can be tested. A statistical
approach, using only the distribution of values within every band
of every input scene is simple to implement and efficient to run,
since the amount of data to be analyzed is much reduced. One of
the early approaches was to force all the scenes to have the same
average brightness. This of course produced a seamless mosaic,
however it looked very unnatural since it had no large-scale
variations of color. Forcing a uniform brightness over the
chlorophyll band (usually mapped to visual green), and then using
the multiplicative and additive factors determined in this way
across all the other bands, followed by limiting the variations
between neighbor scenes produced a much better result. Since
most of the brightness information is obtained from the green
component, this approach generated a uniformly bright image, yet
permitted natural variations of color. One of the main problems
common to all the statistic-based algorithms was introduced by
the coastal scenes, which had a natural very low average
brightness. This was solved by ignoring the low intensity pixels
within the image, in effect only taking into account reasonably
reflective land areas.

Another possible approach used to determine the appropriate
brightness correction is based on finding the best brightness
match in the overlapping area. Each pixel Pi in the overlap region
corresponds to pixel value Xi in one scene and Yi in the
neighboring scene. For different pixels, Xi may be greater than,
less than or equal to Yi, but taken collectively the brightness of
corresponding pixels in the overlap region of two Landsat scenes
tends to have a linear relationship. One exception is the case of
clouds, which may appear in one scene and not in the other.

To determine the appropriate additive and multiplicative
brightness correction to match a scene with its neighbor, we first
generate a scatter plot by plotting the pixel values in one scene, Xi,
versus the pixel values in the neighboring scene, Yi, for all pixels
Pi in the overlap region. A least squares approach [6] is then used
to determine the best line fit through the plotted points. The ideal
best line fit to match the brightness for the two scenes is y=x. If
the actual best line fit is determined to be y=mx+b, the
appropriate additive correction is -b and multiplicative correction
is 1/m.

The least squares approach ensures that all residual errors fit
within a certain tolerance. Outlying points are eliminated and do
not contribute to the final solution. This is an important
advantage that permits matching of scenes with cloud cover,
because pixels that correspond to clouds that appear in one scene
and not in the other tend to become outliers in the least squares
solution.

3.3 Data Storage Format
ImageVision Library supports a large selection of image file
formats, but none of the existing ones provided all the features we
needed. However, since it is easily extendible, a custom file
format was designed and implemented. A previously existing
format, providing hierarchical, multi-spectral and paged image
storage was used as the starting point. This format was also
greatly enhanced to supply additional features. The pre-existing
format specified the order of the pages within the file, the offset at
which each page is stored being uniquely determined by a linear
combination of resolution level, page corner position within the
whole image and spectral channel.

To make this format more flexible, one level of indirection
between the page file offset and the page location within the
image was introduced. This was done by the introduction of a
separate index file, containing a small record for every page. This
record specifies the storage size of the page and the offset of the
page within the data file. The order of records in the index file is
predetermined, the same as the page order in the original image
file format. This addition makes possible per-page compression
since the size of a page is now flexible, and also adds efficient
sparse image storage. We support both JPEG and LZW image
compression since both are readily available and are used
extensively. In addition to standard versions of these, a few
custom variations were attempted, but they are still in the early
development phase.

Another useful feature of this image file format is the fact that the
image file is consistent as soon as an empty data file and a zero
filled index file is created. A record containing a size of zero
specifies that the whole page is black, and no additional storage
space is required. A newly created file, with a zero size data file
and an index file filled with zeros is thus a perfectly valid black
image. As pages are written or modified, they are added at the end
of the file, and the record in the index file is populated. Thus, the
output file can be opened for inspection while it is being created,
allowing early detection of potential problems and an easy visual
inspection of the generated images. Using this format, the image
may be modified by simply appending the new pages of image
data to the data file and modifying the corresponding records in
the index file. If a copy of the previous index file is made and
preserved, simple access to both versions of the file is possible at
a minimal storage cost.

4. CONCLUSION
A simple but powerful framework for producing seamless large
area mosaics has been presented. This code was successfully used
to produce a one arc second, six band Landsat image of the whole
continental U.S. This image is 215,000 pixels wide by 95,000
pixels high and takes 150GB of storage space in compressed form.
Building this image took 10 hours on 32 CPUs of an Origin 2000,
while using 4 GB of memory.

The flexibility of the approach makes it a good candidate for other
data sources and also for even larger mosaics. The image file
format built and used for this mosaic has several advantages over
other file formats, and could also be used by other large visual
data storage applications. The result of this process is available
on the web at http://mapus.jpl.nasa.gov/.

5. ACKNOWLEDGMENTS
The work described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, and
was sponsored by the Air Force Research Laboratory, Warfighter
Training Research Division through an agreement with the
National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise,
does not constitute or imply its endorsement by the United States
Government, or the Jet Propulsion Laboratory, California Institute
of Technology.

6. REFERENCES
[1] Landsat 7 Documents,

http://landsat7.usgs.gov/resource.html.

[2] MRLC Homepage, http://www.epa.gov/docs/grd/mrlc.

[3] Richardus, P. and Adler, R., Map Projections, ISBN 0444
103627, p. 137.

[4] Schowengerdt, R.A., Remote Sensing, Models and Methods
for Image Processing, Second Edition, ISBN 0-12-628981-6.

[5] SGI ImageVision Library,
http://www.sgi.com/software/imagevision.

[6] Sokolnikoff, I.S. and Redheffer, R.M., Mathematics of
Physics and Modern Engineering, ISBN 07-059625.

